ناوبری ,هدایت وكنترل حركت اجسام پرنده یكی از زمینه های علمی بوده كه همواره مورد توجه محققان قرار گرفته است. بی شك یكی از بخش های مهم اجسام پرنده سیستم كنترل یا اتوپایلوت آن است . وظیفه اتوپایلوت ایجاد پایداری ،تعادل و عملكرد مناسب سیستم حلقه بسته برای طی مسیر مورد نظر تا رسیدن به مقصد است .اهمیت و حساسیت سیستم كنترل به عنوان بخشی از تمامی اجسام پرنده باعث ایجاد زمینه علمی وتحقیقاتی به عنوان كنترل پرواز گردیده است .در كنترل پرواز طراحی سیستم های كنترل اجسام پرنده شامل هواپیماها و فضاپیماها, هواپیما و بالگرد های بدون سرنشین و انواع موشك ها كه سیستم هایی با معادلات دینامیک غیر خطی , متغیر با زمان ودارای عدم قطعیت های ساختاری و پارامتری اند مورد بررسی قرار می گیرند . دراین میان رویكردهای كنترلی بسیاری برای دستیابی به پایداری و عملكرد مطلوب با توجه به دقت , سرعت و قابلیت های مانور پذیری مورد نظر در جهت غلبه و كم اثر كردن عدم قطعیت ها ,خطای مدل سازی و…تحقق یافته است.از جمله این رویكردها می توان روش های تطبیقی و مقاوم و نیز روش های هوشمند مبتنی بر سیستم های عصبی و فازی و یا تركیبی از این روش ها اشاره كرد.
موشك ها از دسته ای از اجسام پرنده اند كه به دلیل شرایط پرواز وكاهش جرم در طول پرواز و تغییر ارتفاع ضرایبی آیرودینامیكی معادلات آن نامعلوم و دارای عدم قطعیت است .بنابراین استفاده از روش های تطبیقی و مقاوم در طراحی اتوپایلوت بطوریكه پارامتر های نامعلوم دینامیک موشك را تخمین زده و متناسب با تغییر این پارامتر ها در دینامیک ،پارامتر های اتوپایلوت نیز تغییر كند ،ضروری به نظر
می رسد.از طرفی موشك STT كه در این تحقیق مورد بحث است به دلیل نداشتن دینامیک داخلی معادلات دینامیكی آن بصورت آفین قابل باز نویسی است .اگر توابع موجود در مدل آفین را نامعین (كه به واسطه وابستگی به پارامتر های نا معلوم مانند عدد ماخ این فرض صحیح است ) فرض كنیم.می توان با بهره گرفتن از تئوری تطبیق این توابع را تقریب زد ( روش تقریب مستقیم ) و یا قانون كنترل كه به سبب وابسته بودن به این توابع نیز نامعین است را تقریب زد . این روش ،تقریب مستقیم نامیده می شود .مشكل اصلی روش تقریب مستقیم آنست كه علامت ضریب ورودی كنترل در مدل آفین ، در قواعد تطبیق بكار میرود بنابراین بایستی علامت آن همواره مشخص باشد.
اگر چه دینامیک موشك اساسا غیر خطی است اما اگر مسئله موشك به عنوان یک مسئله خطی در نظر گرفته شود واتوپایلوت آن از كنترل كنندهای كلاسیک مرسوم طراحی گردد با توجه به تغییر شرایط پرواز , نقطه كار تغییر كرده و سیستم حلقه بسته از عملكرد مناسبی برخوردار نخواهد بود .بنابراین اگر یک روش مقاوم مبتنی بر سیستم خطی ارائه گردد ، قانون كنترل مقاوم خطی د ر صورت برآورده شدن شرایط مورد نظر اثر عدم قطعیت ها و تفاوت بین سیستم غیر خطی و سیستم خطی سازی شده در موشك STT را حذف می كند و عملكرد مطلوب حاصل می گردد.
در این پایان نامه در فصل اول به كلیات تحقیق شامل هدف، پیشینه و روش كار تحقیق پرداخته می شود.در فصل د وم به طور مختصر مفهوم هدایت كنترل و جایگاه اتوپایلوت در دینامیک پر واز بررسی می گردد.
در فصل سوم روش های تطبیقی ، مقاوم و هوشمند در كنترل پرواز و قابلیت این روشها در تقابل با عدم قطعیت های ساختاری و پارامتری مورد بررسی قرار می گیرد.
در فصل چهارم مدل سازی دینامیک موشك STT و رهیافت روش های كنترلی مورد بحث است.
فصل پنجم كه به طراحی و شبیه سازی و بررسی عملكرد كنترل كننده های طراحی شده اختصاص دارد و دارای دو بخش طراحی مجزاست.
در بخش اول كه طراحی كنترل كننده مود لغزشی انتگرالی تطبیقی مدل مرجع است قانون كنترل ایدال طراحی شده به روش مود لغزشی با بهره گرفتن از تقریبگر RCMAC بطور مستقیم تقریب زده می شود. در این حالت علامت ضریب كنترل ورودی در مدل آفین موشك تعیین علامت وهرتغییر علامت به قواعد تطبیق اعمال می گردد.
طراحی سیستم های بسیار بزرگ و پیچیده روی یک تراشه واحد مشکل است و از قانون خاصی نیز تبعیت نمی کند. صنعت EDA تلاش می کند با فراهم کردن ابزار و متدولوژی های مورد نیاز، به کارگیری مجدد قطعات، ساختارها و کاربردها را امکان پذیر سازد. از آنجا که نیاز به سازماندهی تعداد زیادی از هسته های IP در یک تراشه با بهره گرفتن از زیرساخت ارتباطی استاندارد در طراحی SOC احساس می شد، این موضوع ابتدا طراحان را به استفاده از روش طراحی مبتنی بر بستر رهنمون گردانید. بسترها تنها دارای ارتباطات مبتنی بر گذرگاه هستند. بنابراین طراح می بایست با پیکره بندی و برنامه ریزی هسته های IP متصل شونده به گذرگاه ها، سیستم جدید را ایجاد می کرد.
اما کم کم احساس نیاز به نوع کارآمدتری از شبکه ارتباطات احساس می شد، که بتوانند ارتباطات در SOC های بزرگ و پیچیده را حمایت کند. بدین ترتیب ایده شبکه روی تراشه مطرح شد. اولین حسن NOC آنست که راه حلی برای مشکلات الکتریکی در تکنولوژی های زیر میکرون به حساب می آید زیرا سیم کشی های عمومی و حجیم را ساختاربندی و مدیریت می کند. به علاوه، کارآمدتر، قابل اطمینان تر و مقیاس پذیرتر نسبت به گذرگاه های معمول است. شبکه قابل پیکره بندی و مقیاس پذیر روی تراشه، بستر انعطاف پذیری است که می تواند با نیازهای کاربردهای مختلف منطبق شود. اما در ساخت این تراشه ها، هنوز مشکلاتی نظیر هزینه ارتباطات بین مولفه ها و احتمال بروز خرابی های غیرقابل پیش بینی در مولفه ها و مدارات ارتباطی وجود دارد. از اینرو تحمل پذیری خطا در ارتباطات، نقش مهمی در گسترش معماری شبکه روی تراشه دارد. در این پروژه روش های مختلف تحمل پذیری خطا در شبکه های روی تراشه و شبکه های کامپیوتری مورد بررسی و تحلیل قرار گرفته و یک روش جدید ارائه شده است. ادامه پایان نامه به صورت زیر می باشد: فصل اول به بیان هدف و پیشینه تحقیق می پردازد. فصل دوم ی بر خصوصیات شبکه و شبکه های سوئیچینگ بسته ای که برای شبکه روی تراشه پیشنهاد شده اند داشته، روش های طراحی شبکه روی تراشه را معرفی می کند. فصل سوم خرابی ها، روش های مدلسازی خرابی و الگوریتم های تحمل پذیر خطای موجود برای شبکه روی تراشه را شرح می دهد. فصل 4 به تشریح الگوریتم پیشنهادی می پردازد. فصل 5 در رابطه با جزئیات شبیه سازی و ارزیابی نتایج شبیه سازی می باشد. نتیجه گیری کلی و پیشنهادات نیز در ادامه ارائه شده اند.
تاریخچه استفاده از كارت های پلاستیكی برای شناسایی افراد به حدود سال 1950 بر می گردد. كلوپ اشرافی داینرز در آمریكا یكی از اولین جاهایی بود كه این كارت ها را به اعضایش ارائه نمود در آن زمان از بدنه پلاستیكی كارت بسادگی برای نوشتن نام و مشخصات دارنده كارت بصورت حروف برجسته استفاده می شد و كارت نقشی شبیه به كارت های اعتباری امروزی ایفا می نمود.
پیشرفت در زمینه استفاده از كارت ه ا, با ایجاد نوار مغناطیسی بر روی كارت كه توسط ماشین مخصوص قابل خواندن و نوشتن بود , سرعت گرفت و وارد مرحله جدیدی شد كه دراین كارت های مغناطیسی علاوه بر روش های برجسته كاری حروف بر روی بدنه پلاستیكی كارت , اطلاعات اضافی تا حدود 1000 بیت بر روی نوار مغناطیسی قابل ذخیره سازی می باشد. به علت خودكار شدن نسبی فرایند بررسی اعتبار كارت توسط ماشین و به دلیل امكان ارتباط لحظه ای با سیستم مركزی, امنیت این نوع كارت ها نسبت به كارت های حروف برجسته بیشتر اس ت . كارت های مغناطیسی بخصوص در صنعت بانكداری و امور مالی – اعتباری بیشترین محبوبیت را كسب نمودند . با وجود این محبوبیت , سطح امنیتی ارائه شده توسط كارتهای مغناطیسی پائین بوده و تقلب در این سیستم ها ضررهای
زیادی را متوجه سازمان های ار ائه دهندة كارت ها نموده است . این امر بخاطر آنست كه با داشتن یک ماشین استاندارد خواندن و نوشتن
نوار مغناطیسی , محتوای اطلاعات ثبت شده در این نوع كارت ها ب ه راحتی قابل دستكاری و جعل می باش ند. تلاش هایی برای امن كردن كارت های مغناطیسی از طرف سازندگان صورت گرفته است.
بعنوان مثال در چك كارت های آلمانی یک ك د نامرئی و غیرقابل تغییر در بخشی از بدنة كارت قرار داده می شود كه این كد توسط ترمینال خوانده شده و با اطلاعات نوار مغناطیسی مقایسه می شود بدین ترتیب تغییر ات محتوی نوار مغناطیسی قابل كشف می
شود. با وجود این اولا هزینه دستگاه های مخصوص بكار رفته در ترمینال در این نوع سیستم بالا است, ثانیاً امنیت حاصله از این روش چندان محبوبیت پیدا نكرده است.
وجود مشكلات كارت های مغناطیسی از یک طرف و پیشرفت تكنولوژی نیمه هادی ها از دیگر سو موجب گردید تا تحقیقات بر روی امكان استفاده از تراشه های نیمه هادی در كارت ها شروع گردد.
در سال 1968 , دو محقق آلمانی ایده كارت دارای مدار مجتمع را معرفی نمودند . در سال 1974 یک محقق فرانسوی با معرفی ایده كاربرد ریزپردازنده در تراشه كارت عنوان كارت هوشمند را معرفی نمود . بدین ترتیب و با پیشرفت سریع تولید تراشه های نیمه هادی با ابعاد ریز , امكان ایجاد كارت های به معنی واقعی هوشمند كه ب ه منزلة یک رایانة كوچك قابل حمل بودند ,فراهم گردید. كارت های هوشمند هم از لحاظ میزان حافظه موجود برای ذخیره سازی اطلاعات و هم به لحاظ امنیت فیزیكی و منطقی از كارت های مغناطیسی قدیمی برترند.
امروزه در سیستم های نوین مخابراتی، بخصوص در سیستم های مبتنی بر نسل سوم مخابرات سیار، مدیریت منابع رادیویی به صورت پویا انجام می شود، به این ترتیب که پارامترهای اساسی طراحی سیستم، نظیر پارامترهای مربوط به مدوله سازی و کدکردن یا پارامترهای مربوط به کنترل توان، متناسب با وضعیت پویای کانال مخابراتی تعیین می شوند و تغییر می کنند. این رویکرد در طراحی سیستم های مخابراتی که در پژوهش های اخیر از آن با عنوان های “تطبیق پیوند” یا “مدوله سازی و کدکردن وفقی” (AMC) یاد می شود، باعث افزایش کارایی سیستم در مقایسه با سیستم های ایستا و کلاسیک مخابراتی شده، امکان دست یابی به ظرفیت های مخابراتی بالاتر را در یک ارتباط رادیویی فراهم می سازد. این افزایش کارایی، بخصوص در ارتباط های سلولی چندکاربره، با توجه به ملاحظه ی لحظه ای حضور دیگر کاربران در ارتباط مخابراتی و تصمیم گیری پویا برای کاهش اثر تداخل آن ها، چشم گیر و غیر قابل صرف نظر است.
با این حال، استفاده از مزیت های مربوط به این روش تنها در صورتی ممکن است که شناخت مناسبی از وضعیت فعلی کانال در دسترس باشد. همچنین، لازم است که برمبنای پارامترهای فعلی کانال، نسبت به پیش گویی وضعیت کانال در لحظه های آینده اقدام شود، تا پارامترهای مربوط به طراحی سیستم (نظیر پارامترهای مدوله سازی و کدکردن) متناسب با این پیش گویی تعیین و تنظیم شوند.
تخمین کانال های مخابراتی در حالت های غیرخطی و متغیر با زمان، با پیچیدگی های تحلیلی و سخت افزاری بسیاری همراه است و تکنیک های کلاسیک مطرح شده در کتاب ها و مقالات مختلف برای همسان سازی کانال، اغلب از غیرخطی بودن و متغیر با زمان بودن کانال ها صرف نظر
می کنند. از سوی دیگر، با فرض این که به پارامترهای فعلی کانال بتوان دسترسی داشت، برای پیش گویی کانال در لحظه های آینده، تنها چند روش محدود در مقاله ها و منابع کلاسیک مخابرات سیار ذکر شده که اغلب مبتنی بر پیش گویی خطی کانال هستند. استفاده از شبکه های عصبی، با توجه به ماهیت غیرخطی این شبکه ها و توانایی تعمیم آن ها پس از طی یک دوره ی آموزشی مناسب، می تواند راهکار تازه ای برای تخمین و پیش گویی کانال باشد. این پایان نامه به تحقیق درباره ی همین موضوع می پردازد.
در فصل اول این پایان نامه، ویژگی های اصلی کانال های سیار مخابراتی با محوشدگی باند باریک می شوند. بحث درباره ی نویز سفید جمع شونده ی گوسی و مطالعه ی مدل رایلی از مباحث مطرح شده در این فصل هستند.
در فصل دوم، پس از بحث درباره ی اهمیت و مزیت های مدوله سازی تطبیقی، نشان داده می شود که با پیشگویی رفتار کانال می توان کارایی سیستمی را که از مدوله سازی تطبیقی استفاده می کند افزایش داد.
در فصل سوم، فرایند محاسبه ی سیگنال به نویز (SNR) به دو بخش تخمین نسبت سیگنال به نویز محض کانال (SNR0) و پیش گویی توان محوشدگی (α) تقسیم شده، سیستم پیشنهادشده ی مبتنی بر شبکه های عصبی برای محاسبه ی این دو پارامتر، معرفی و ارزیابی می شود.
فصل چهارم نیز به جمع بندی و ارائه ی چند پیشنهاد اختصاص یافته است.
تكامل رله های حفاظتی ژنراتور از رله های مكانیكی جدا از هم به رله های استاتیک با المانهای نیمه هادی و سپس به رله های دیجیتال با پردازشگرهای چند كاره بوده است . گر چه اغلب حفاظتهای موجود متشكل از رله های الكترومكانیكی و یا استاتیكی هستند اما در هنگام تعویض این رله ها جهت دست یابی به قابلیت اطمینان بهتر سیستم و دریافت اطلاعات كاملتر از رله ها ،انتخاب رله های دیجیتال اجتناب ناپذیر است. مهندسی حفاظت بیش از ده سال است كه از این رله ها استفاده می كند و در این مدت به سهولت كاربرد این رله ها و مزایای بی شمار استفاده از تكنولوژی دیجیتال دست یافته است. دو روش جهت استفاده از سیستم های حفاظتی دیجیتال ژنراتوری برای كارشناسان حفاظت وجود دارد. در روش اول تمامی سیستم حفاظتی الكترومكانیكی و یا استاتیكی با مجموعه ای ازیک سیستم حفاظت چند كاره تعویض می گردد و در دومین روش سیستم حفاظت جدید به مجموعه سیستم حفاظتی قبلی اضافه می گردد. در بیشتر مواقع پیشنهاد كارشناسان برای تعویض یک سیستم حفاظتی روش دوم است كه تركیبی از رله های حفاظتی چند كاره با سیستم حفاظتی قدیم است . در این حالت رله های دیجیتال حفاظت اصلی واحد را بعهده می گیرند و حفاظت پشتیبان بوسیله رله های الكترومكانیكی انجام می
شود. سیستم های حفاظتی دیجیتال علاوه بر انجام كارهای روتین حفاظت اندازه گیری كمیتهای مختلف ولتاژ، جریان، فركانس، توان اكتیو و راكتیو را در پریودهای زمانی مشخص انجام می دهند . همچنین منحنی های تغییرات كمیتهای فوق نسبت به زمان و امكان انتقال اطلاعات به فواصل دور از مزایای حفاظت دیجیتال است.
در حفاظت دیجیتال امكان تحلیل وقایع و ترتیب عملكرد رله های مختلف جهت دستیابی به نقاط ضعف سیستم حفاظتی و یا تحلیل خطای موجود در شبكه بسیار كاملتر از رله های نسل پیش است. امكان تغییر تنظیمات رله از راه دور، همچنین تغییر ساختار شماتیک حفاظت تغییر اینترلاكها و واحدهای فعال كننده رله بدون تغییر در ساختار سخت افزاری بخش حفاظت وجود دارد. پیشرفت تجاری حفاظت دیجیتال مربوط به دهه هشتاد و همزمان با كاهش چشمگیر قیمت پردازشگرهای چند منظوره بوده است. كاهش در فضای پانلها و همچنین كاهش در مقدار ولت آمپر مصرفی دستگاه های حفاظت كه منجر به كاهش بردن ترانسهای ولتاژ و جریان می گردد از پیامدهای استفاده از رله های دیجیتال است. فاكتورهای مهمی كه در انتخاب میزان افزونگی و ساختار حفاظت و احد موثر است قدرت تولیدی ژنراتور، دستورالعملهای سازنده و تجارب بهره بردار واحد می باشد كه مجموعه موارد فوق طراح حفاظت را در انتخاب ساختار سیستم حفاظت یاری می نماید. سمینار زیر كه با عنوان تحلیل و تنظیم رله های حفاظتی واحدهای سیكل تركیبی كرمان ارائه گردیده به موضوع حفاظت دیجیتال ژنراتور پرداخته و رله نمونه است كه در این واحدها مورد رله 216 REG ساخت شركت ABB مورد بحث استفاده قرار گرفته است.
فصل اول: مبانی حفاظت دیجیتال
فصل دوم: سخت افزار رله REG 216C
فصل سوم: تبین وظایف رله های مختلف حفاظتی ژنراتور و بیان مبانی تنظیم این رله ها
فصل چهارم: تنظیم رله های حفاظتی 216
مراجع
با توجه به گستردگی موضوعات در مورد رله ه ای دیجیتالی مانند رله دیفرانسیل وسایر رله های جریانی و ولتاژی بنا به پیشنهاد استاد محترم راهنما در موضوع حفاظت ژنراتور، تاكید بر رله های حفاظتی امپدانسی ژنراتور خاصه رله های قطع تحریک و حفاظت لغزش قطب بوده است. و بنابراین مقالات ارائه شده در قسمت مراجع بشتر در زمینه همین موضوعات میباشد.