وبلاگ

توضیح وبلاگ من

سمینار کارشناسی ارشد مهندسی شیمی: بررسی فعالیت کاتالیست های اسید جامد مصرفی

سمینار کارشناسی ارشد مهندسی شیمی: بررسی فعالیت کاتالیست های اسید جامد مصرفی


در اوایل قرن بیستم مهندسین ماشین به این نتیجه رسیدند كه موتورها بدون ضربه ، نرمتر و با بازدهی بیشتری كار می كنند . در سال 1916، Tomas Midgely یک دانشمند محقق كه در آزمایشگاه های تحقیقاتی شهر Dayton، كار می كرد پس از انجام یک سری از آزمایشات دریافت كه اضافه كردن ید به بنزین به طور موثری باعث كاهش ضربه در موتور می شود . اوضربه های موتور را ناشی از كیفیت پایین احتراق سوخت كه بعد ها به نام شاخص اكتان شناخته شده است دانست افزودن ید به بنزین باعث افزایش اكتان و كاهش ضربه موتور گردید. ولی در عین حال دو مشكل اساسی در بر داشت: 1- خورندگی 2- قیمت بالا
در یک كار تحقیقاتی مكمل در سال 1917، Charles kettering و Midgely اتیل الكل و بنزین را مخلوط كرده و دریافتند كه مخلوط الكل و بنزین سوخت مناسبی برای موتور است ونسبت به سایر مواد افزودنی دارای مزایای بیشتری است . زیرا تمیز وبدون هر آلودگی میسوزد و بدون ایجاد ضربه، تولید نسبت تراكم بیشتری در داخل موتور می كند و به دلیل افزایش عدد اكتان ، تولید اسب بخار بیشتری می كند.
Midgely در سال 1921 خواص تترا اتیل سرب (TEL) را كشف كرد. یک لیتر از TEL برای عمل آوردن 1150 لیتر بنزین كافی بود. سپس تحقیقات برای افزودن اتانول به بنزین ادامه پیدا كرد. ولی شركت های نفتی مصرف  را به عنوان ماده افزودنی بنزین ترجیح می دادند زیرا

دانلود مقالات

 افزودن اتانول به بنزین، مصرف بنزین وسایل نقلیه را 20 الی 30 درصد كاهش می داد.

پس در سال 1996 مصرف بنزین سرب دار برای وسایل نقلیه در ایالت متحده آمریكا ممنوع شد . به دلیل عدم امكانات وسرمایه هنوزهم در خیلی از كشورها بنزین سربدار مصرف می شود.در سال 1970 لایحه (Clean Air Act) قانونی شد و مصرف بنزین بدون سرب تدریجاً از سال 1973 در ایالات متحده آغاز شد. قوانین ایجاد شده توسط (Clean Air Act) برای غلبه در مسائل زیست محیطی، از طریق کاهش تشکیل ازت در سطح زمین و نشر مونواکسید کربن از وسایل نقلیه همچنین کاهش نشر اکسیدهای سنگین SOx و NOx از اگزوزها، بنا شدند برای این منظور بنزین باید ویژگی های زیر را داشته باشد:
1- فراریت پایین: کاهش فشار بخار بنزین (RVP) به ویژه در طول ماه های تابستان باعث کاهش میزان ازت می شود. حذف بوتان ها و حتی CO ها از بنزین به دستیابی به این ویژگی در بنزین می انجامد.
2- محدودیت در میزان آروماتیک ها بخصوص بنزن: این مساله با کاهش برش بالای بنزین FCC انجام پذیر است.
3- افزایش ترکیبات اکسیژن دار: TAME و MTBE دو ترکیب برای این منظور هستند.
4- کاهش میزان الفین ها: این هدف با حذف الفین های CO از بنزین Fcc قابل دستیابی است. در ضمن حذف الفین های CO باعث کاهش بیشتر (RVP) می شود.
5- کاهش میزان گوگرد: این هدف نیازمند هیدروترتینگ (Hydrotreating) خوراک Fcc یا برش سنگین (heavy-end) بنزین Fcc می باشد.
6- حذف سرب: حذف سرب باعث کاهش عدد اکتان بنزین می شود که باید با جریان های دیگر وارد شوند، به استخر (Pool) بنزین جبران شود.
به نظر می رسد که الکیلات (محصول فرایند الکیلاسیون) می تواند در تنظیم استخر جدید بنزین کمک کند. زیرا الکیلات عدد اکتان بالایی دارد. و عدد اکتان بالای آن به دلیل مقدار زیاد پارافین شاخه دار کم واکنش پذیر موجود در آن حساسیت کمی دارد. با توجه به این مطلب می توان افزایش ظرفیت الکیلاسیون در سال های آتی را، به ویژه اگر محدودیت های استفاده از کاتالیست های اسید مایع با ساخت کاتالیست پایدار جامد جدید برطرف شود، انتظار داشت. حال در ادامه توضیحاتی را پیرامون الکیلات ارائه می نماییم.

سمینار ارشد مهندسی شیمی طراحی فرآیند: بررسی روشهای بازیافت گازهای ارسالی به فلر

سمینار ارشد مهندسی شیمی طراحی فرآیند: بررسی روشهای بازیافت گازهای ارسالی به فلر

:
حتی در پیشرفته ترین كشورهای دنیا بیش از یک دهه از عمر فناوری نوین بازیافت گازهای فلر نمی گذرد، لذا این روش یكی از روش های جدید برای استفاده از ضایعات پالایشگاه ها می باشد.
از جمله كشورهایی كه در زمینه بازیافت گازهای فلر فعالیت دارند می توان از ایالات متحده آمریكا، ایتالیا، هلند و سوییس نام برد.
در كشورهای آسیایی و خصوصا كشورهای واقع در منطقه خاورمیانه (بعلت نفت خیز بودن این مناطق) فناوریهای بازیافت مواد زاید پالایشگاهی مثل گازهای فلر از اهمیت زیادی برخوردار می باشد.
لازم به ذكر است در انجام این پروژه اطلاعات پالایشگاه تبریز پایه محاسبات قرار گرفته است. بازیافت گازهای فلر روشی است كه در آن از گازهای زایدی كه در برجهای فلر سوزانده می شوند به بهترین نحو استفاده می شود.
برای نیل به این منظور گازهای فلر پس از جمع آوری از لوله اصلی و قطره گیر فلر، به سمت یک كمپرسور می روند، طراحی و انتخاب این كمپرسور مهمترین قسمت پروژه می باشد. پس از فشرده شدن گاز بر اساس ساختار پالایشگاه یا واحد مربوطه گازها و مایعات به عنوان

دانلود مقالات

 خوراك یا سوخت مورد استفاده قرار می گیرند.

برای فشرده ساختن گازها و طراحی واحد بازیافت گازهای فلر معمولا از كمپرسورهای دارای چرخه مایع و یا كمپرسورهای رفت و برگشتی استفاده می كنند.
مزیت كمپرسورهای دارای چرخه مایع خنك شدن گازها در هنگام كمپرس شدن توسط انتقال حرارت با مایع داخل كمپرسور (معمولا آب) می باشد، در صورت تمایل به جداسازی سولفید هیدروژن گازهای فلر می توان از آمین به جای آب استفاده كرد.
اما كمپرسورهای رفت و برگشتی را بسیار راحتتر از كمپرسورهای با چرخه مایع می توان خریداری كرد، همچنین تهیه لوازم یدكی، تعمیرات و نگهداری این نوع از كمپرسورها راحتتر می باشند. در صورت استفاده از كمپرسورهای رفت و برگشتی باید به این نكته توجه كرد كه در صورت افزایش دما بیش از حد مجاز امكان انفجار وجود دارد  .به همین دلیل در این پروژه دو حالت برای شبیه سازی مورد بحث قرار می گیرد:
حالت اول – خنك كردن گاز ورودی قبل از داخل شدن به كمپرسور: این روش باعث می شود فشرده سازی گاز در یک مرحله انجام شود و لذا هزینه اولیه كمپرسور كاهش یابد ولی در عوض باید هزینه خنك كن را به هزینه واحد اضافه كنیم.
حالت دوم – فشرده كردن گاز توسط یک كمپرسور دو مرحله ای: در این حالت به علت دو مرحله ای بودن كمپرسور و وجود خنك كننده میانی هزینه كمپرسور افزایش می یابد اما در عوض نیازی به حنك كننده گاز ورودی نیست.
در نهایت باید با بررسی اقتصادی بهترین حالت را انتخاب و گزارش نمود.
در انتهای این پروژه و در قسمت محاسبات مشخص می شود كمپرسور تك مرحله ای برای پالایشگاه تبریز كه یكی از پالایشگاه های بزرگ ایران است، مناسب تر است.
همچنین خواهیم دید این پروژه با عواید اقتصادی نیز توام است (در حدود نودوسه میلیون تومان سوددهی در سال).
در صورت اجرای قرارداد كیوتو در ایران مساله بازیافت گازهای فلر از اهمیت بیشتری برخوردار خواهد شد كه این مساله اهمیت تحقیق در مورد گازهای فلر پالایشگاه ها، پتروشیمی ها و دیگر صنایع را نشان می دهد.
از كشورهای تولید كننده این تجهیزات صنعتی می توان از یالات متحده، سوییس، ایتالیا و هلند نام برد.

پایان نامه ارشد مهندسی شیمی محیط زیست: مدلسازی ریاضی گازشوی بیولوژیکی

پایان نامه ارشد مهندسی شیمی محیط زیست: مدلسازی ریاضی گازشوی بیولوژیکی

:
گاز طبیعی غالبا ناخالصی هایی چون دی اکسید کربن (گاز اسیدی)، سولفید هیدروژن (گاز ترش) و آب و همچنین نیتروژن، هلیوم و سایر گازهای نادر را به همراه دارد. دی اکسید را به حوزه های نفتی قدیمی تخلیه شده تزریق می کنند تا تولید آنها افزایش یابد. نیتروژن نیز گازی است قابل تزریق به حوزه های نفتی و هلیوم در صنایع الکترونیک موارد استفاده ارزشمند و فراوان دارد. سولفید هیدروژن (H2S) بسیار سمی است و مقادیر بسیار ناچیز آن نیز می تواند کشنده و مهلک باشد. سولفید هیدروژن بسیار خورنده و فرساینده است و می تواند به لوله ها، اتصالات و شیرهای چاه آسیب و خسارت وارد کند. بنابراین قبل از انتقال گاز طبیعی به خطوط لوله، سولفید هیدروژن جداسازی شده و دی اکسید کربن و آب آن نیز از طریق آب زدایی یا نمک گیری گرفته می شود. حذف دی اکسید کربن و سولفور بعد از جداسازی مایعات گازی از گاز طبیعی خام دومین قسمت از فرآورش گاز می باشد که شامل جداسازی دی اکسید کربن و سولفید هیدروژن است. گاز طبیعی بسته به موقعیت چاه مربوط مقادیر متفاوتی از این دو ماده را شامل می گردد. فرایند تفکیک سولفید هیدروژن و دی اکسید کربن از گاز ترش، شیرین کردن گاز نامیده می شود. سولفید هیدروژن و دی اکسید کربن را می توان سوزاند و از گوگرد نیز صرفنظر نمود ولی این عمل باعث آلودگی شدید محیط زیست می گردد. با توجه به اینکه سولفور موجود در گاز عمدتاً در ترکیب سولفید هیدروژن H2S قرار دارد حال چنانچه میزان سولفید هیدروژن موجود از مقدار 5/7 میلیگرم در هر متر مکعب گاز طبیعی بیشتر

پروژه دانشگاهی

 باشد به آن گاز ترش اطلاق می گردد. و چنانچه از این مقدار کمتر باشد نیاز به تصفیه نمی باشد. سولفور موجود در گاز طبیعی به علت دارا بودن بوی زننده و تنفس های مرگ آور و عامل فرسایندگی خطوط لوله انتقال، گاز را غیرمطلوب و انتقال آن را پرهزینه می سازد.

برای شیرین سازی گاز طبیعی دو روش عمده فیزیکو شیمیایی و بیولوژیکی وجود دارد. روش های فیزیکوشیمیایی دارای قدمت بسیار بیشتری بوده و کاربرد آنها بسیار بیشتر از روش های بیولوژیکی در صنعت می باشد. در ابتدا هدف از شیرین سازی گاز حذف H2S از آن بود حتی اگر این گاز به محیط وارد می شد، اما پس از مشخص شدن خطرات زیست محیطی و بشری H2S قوانین سخت تر شد و در نتیجه با اعمال روش های تکمیلی از ورود این ماده به هوا نیز جلوگیری به عمل آمد. ایجاد واحدهای بازیافت گوگرد مانند کلاوس در پالایشگاه ها نیز در همین راستا بود.
مزایای فراوان روش های بیولوژیکی در مقایسه با روش ها معمول شیرین سازی گاز باعث افزایش روزافزون توجه محققین به این روشها گردیده است. از روش های بیولوژیکی می توان به دو صورت مستقیم و یا غیرمستقیم (جایگزین واحد کلاوس) در صنعت گاز استفاده کرد. در روش مستقیم گاز ترش مستقیماً وارد مرحله بیولوژیکی می شود در حالی که در روش غیرمستقیم گاز ترش ابتدا وارد فرایند آمین شده و گازهای ترش خروجی از برج دفع فرایند آمین وارد مرحله بیولوژیکی می گردد.
فصل اول: کلیات
1-1) هدف
اساس روش های بیولوژیکی برای شیرین سازی گاز طبیعی بر مبنای استفاده از باکتری های گوگردی استوار است. این باکتری ها سولفید را مصرف کرده، تولید گوگرد و یا سولفات می کنند. در مقایسه با تکنیک های فیزیکوشیمیایی که مواد آلاینده گاهی به سادگی از یک فاز به فاز دیگر منتقل نمی شوند و یا اینکه تبدیل به مواد مضرتری می شوند، تصفیه بیولوژیکی را می توان به اکسیداسیون کاتالیستی در دمای پایین تشبیه کرد که نیاز به سوخت و مواد شیمیایی ندارد و مزیت دیگر آن ایمنی این سیستم می باشد. کاتالیست ها (آنزیم های میکروبی) به طور مداوم توسط میکروارگانیسم ها تولید می شوند و بیوفیلتراسیون، هیچ ماده آلوده کننده ثانویه یا ضایعات خطرناک تولید نمی کند. هدف معرفی روشی بهینه و بررسی اثر عوامل مختلف روی پارامترهای طراحی می باشد.
2-1) پیشینه تحقیق
در کشور ما گازهای اسیدی جدا شده در واحد آمین براساس میزان H2S یا سوزانده شده و یا به واحد کلاوس فرستاده می شود. با سوزاندن که برای گازهایی با مقادیر کم H2S مورد استفاده قرار می گیرد گازهای اسیدی در مشعل پالایشگاه سوزانده می شود هرچند که با این روش H2S حذف می شود اما سوختن سولفید هیدروژن باعث تولید SO2 می شود که این ماده برطبق قوانین استانداردهای ملی کیفیت هوای آزاد در گروه آلاینده های مقیاس گروه بندی می شود و غلظت مجاز آن 0/03ppm می باشد. همچنین با آب واکنش داده و تولید اسید سولفوریک می کند که باعث ایجاد باران اسیدی و ذرات معلق می گردد. علاوه بر فرایندهای حذف H2S در فاز گاز، فرایندهای اکسیداسیون مستقیم H2S در فاز مایع و فرایندهای جذب سطحی بر فاز جامد در حال گسترش هستند. این فرایندها برای حذف مقادیر H2S در محدوده بسیار کم تا 5 درصد مولی در گاز طبیعی، ظرفیت بازیافت گوگرد حداکثر 20 تن در روز به کار می روند. برای غلظت های بالاتر H2S و بازیافت مقادیر بیشتر گوگرد فرایندهای کلاوس و آمین اقتصادی تر هستند.

پایان نامه ارشد مهندسی شیمی: تجربه آمونیاک از پساب و آب به روش فتو کاتالیستی

پایان نامه ارشد مهندسی شیمی: تجربه آمونیاک از پساب و آب به روش فتو کاتالیستی


از نقطه نظر شیمیدان ها، آب به صورت خالص ترین حالت آن در طبیعت یافت نمی شود و تهیه آب خالص مستلزم صرف هزینه و مواد می باشد. در نتیجه، این آب در محیط زیست و در طبیعت سریعا توسط ترکیبات مختلف آلوده می گردد. از طرف دیگر پیشرفتهای حاصله در علوم و فن آوری های مختلف موجب پیدایش مواد و مولکول های شده، که می توانند در برابر تجزیه زیستی مقاومت نمایند. در این میان، ترکیبات آلی و نیتروژن دار از جمله مواد مضر برای موجودات زنده هستند. این گونه ترکیبات عمدتا از واحدهای داروسازی، صنایع کاغذسازی، کک سازی، پتروشیمی و تولید روغن، پالایشگاه های نفت و بسیاری از واحدهای شیمیایی دیگر خارج می شود. که رها شدن چنین موادی در محیط زیست از خطرات مهم زیست محیطی محسوب می شوند. از طرف دیگر با توجه به افزایش محدودیت های ناشی از قوانین زیست محیطی و به منظور حفظ تعادل اکوسیستم طبیعی نیاز به روش های تصفیه ای جدیدی می باشد که بتوانند این مواد را حذف و یا حداقل به موادی با مولکول های کوچکتر و قابل تصفیه تبدیل نمایند. روش های متعارف تصفیه مانند روش های زیستی، برای تصفیه پساب های حاوی چنین موادی پاسخگو نمی باشد و روش های فیزیکی نیز این مواد را از یک محیط (با غلظت کمتر و حجم بیشتر) به محیط دیگر (با غلظت بیشتر و حجم کمتر) و یا از یک فرم (بسیار خطرناک) به فرم دیگر (کمتر خطرناک) تبدیل می کنند [Fernandes,2005; Gorgate,2002]
البته از سالیان دور سوزاندن فاضلاب های حاوی مواد خطرناک مرسوم بوده است در حالی که این روش تنها برای فاضلاب هایی با غلظت بالا (بدون در نظر گرفتن آلودگی اتمسفریک هوا) قابل توجیه است.

روش های اکسیداسیون شیمیایی، الکترو شیمیایی، فتوشیمیایی و فتوکاتالیسی فاضلاب های خطرناک از جمله جدیدترین و آخرین راه حل ها برای حذف کامل آلاینده ها مطرح می باشند. لیکن این روش های فعلا از نظر اقتصادی (چه از نظر هزینه ثابت و چه از نظر هزینه عملیاتی) قابل رقابت با فرایندهای تصفیه زیستی رایج نیستند. در تصفیه زیستی میکرو ارگانیسم ها بدون افزایش مقدار قابل ملاحظه ماده شیمیایی و فقط با کمک اکسیژن (تا هنگامی که سوبسترات آلی وجود دارد) واکنش اکسیداسیون را ادامه می دهند. در حالی که انجام این 

دانلود مقالات

عمل توسط واکنش های شیمیایی، فتوشیمیایی، الکتروشیمیایی و فتو کاتالیستی مستلزم صرف هزینه فراوان، جهت تجزیه کامل آلاینده ها می باشد.

استفاده از روش های فتوشیمیایی و فتو کاتالیستی با نگاه به الگوی طبیعت به عنوان راکتور فتوشیمیایی عظیم بوده که در مجموعه آن خورشید به عنوان منبع تشعشع الکترومغناطیسی، هوا به عنوان ترکیب گازی و آب به عنوان محیط مایع، شرایط واکنش های فتوشیمیایی در آب و هوا را امکان پذیر ساخته است و این مسئله سبب توجه دانشمندان به بررسی بیشتر فرایند القاء نور و همچنین واکنش ها که با نور شروع می شوند شده است. و حجم عظیم مقالات منتشر شده در زمینه توسعه تکنولوژی های فتوشیمیایی (در فرایندها زیست محیطی و به ویژه در مورد تصفیه آب و هوا) و گسترش آن در مقیاس صنعتی مؤید آن است [Oppenlander,2003].
صنایع مختلف به ویژه پتروشیمی پساب های آلوده ای تولید می کند که بعضی از این پساب ها حاوی ترکیبات نیتراتی و آمونیاکی هستند، که این مواد سمی بوده و برای استفاده از روش متعارف تصفیه زیستی ایجاد مانع می نمایند. در این میان استفاده از روش جدید تصفیه ای فتوکاتالیستی به عنوان یک راه ساده حذف ترکیبات آمونیاکی شناخته شده است. به همین دلیل، در این تحقیق حاضر نیز آمونیاک به عنوان آلاینده انتخاب گردید تا حذف فتوکاتالیستی آن مورد بررسی قرار گیرد. به طور کلی فعالیت های انجام گرفته در این تحقیق  مطالعات کتابخانه ایی گسترده و جامع، بررسی روش های فتو شیمیایی، فتوکاتالیستی و حذف آمونیاک از آب و هوا به روش فتوکاتالیستی است.
فصل اول: اکسیداسیون فتوشیمیایی
1-1- نور و مفاهیم اولیه آن
انتقال انرژی از نظر کلاسیک به سه صورت هدایت، جابجایی و تشعشع انجام می شود. تشعشع برخلاف دو روش دیگر نیاز به محیط مادی جهت انتقال ندارد که نمونه مشخص آن، انتقال نور خورشید به زمین می باشد.
رفتار نور را می توان از نظر بنیادی براساس دو مکانیسم معرفی کرد. از یک طرف براساس تعریف تشعشع الکترو مغناطیسی نور موجی است که شامل یک میدان الکتریکی (E) و یک میدان مغناطیسی (M) می باشد که عمود به هم بوده و در راستای بعد سوم که همان سرعت نور © می باشد در حرکت است.
تشعشع EMR دارای دو مشخصه مهم طول موج و فرکانس می باشد. برحسب تعریف طول موج فاصله اندازه گیری شده (برحسب متر) بین دو Peak کامل موج و فرکانس، تعداد موج های گذرنده از یک نقطه ثابت در هر ثاینه (Hertz) می باشد. رابطه طول موج و فرکانس به صورت زیر بیان می شود.
C=;D           و                             C=3*108 m/s
در طول موج های کوتاه تشعشع EMR  بر مواد، تاثیر شیمیایی می گذارد که تئوری موج قادر به تشریح آن نمی باشد. از طرف دیگر تئوری ذره ای امواج الکترو مغناطیسی قادر به برطرف کردن این نقطه ضعف می باشد. براساس این تئوری انرژی الکترو مغناطیس بر پایه ذرات بنیادی به نام فوتون انتقال می یابد. واحد انتقال انرژی تحت عنوان کوانتا بوده و براساس رابطه زیر تعریف می شود.
Q=hv
در رابطه بالا انرژی انتقال یافته براساس واحدهای انتقال انرژی (کوانتا) و برحسب ژول است. همچنین h با نام ثابت پلانک معروف بوده و برابر 6.26*10-34 می باشد.

سمینار ارشد مهندسی شیمی: بررسی کاربردهای نانوتکنولوژی در صنایع بالادستی نفت

سمینار ارشد مهندسی شیمی: بررسی کاربردهای نانوتکنولوژی در صنایع بالادستی نفت

نانوتکنولوژی، توانمندی تولید مواد، ابزارها و سیستمهای جدید با در دست گرفتن کنترل در سطوح مولکولی و اتمی و استفاده از خواصی است که در آن سطوح حاضر میشود. از همین تعریف ساده برمی آید که نانوتکنولوژی یک رشته جدید نیست، بلکه رویکردی جدید در تمام رشته هاست. فناوری نانو هنوز در مراحل اولیه رشد خویش میباشد. گرچه هم اکنون برخی از محصولات این فناوری در بازار موجود است، ولی این دانش بایستی قبل از تجاری شدن هم از جنبه های تکنولوژیکی و هم از جنبه های علمی پیشرفت نماید.
نانوتکنولوژی را باید به عنوان مقولهای بلندمدت نگاه کرد که حداقل نیمه اول قرن بیست و یکم را به طور مداوم تحت تأثیر قرار خواهد داد. کشورهای مختلف، در آموزش و پروش نانو به عنوان فعالیت بلندمدت سرمایهگذاری نمودهاند و برای دستیابی به دستاورهای نزدیک مدت نیز پژوهشهای متعددی در حوزه هایی چون نانو مواد، نانوالکترونیکو مانند آن در دست انجام است. از ویژگیهای نانوتکنولوژی میتوان به موارد زیر اشاره نمود:
نانوتکنولوژی، یکتکنولوژی عام است که در بسیاری از تکنولوژی های دیگر کاربرد داشته و بعضی از آنها را متحول میکند.
اثرات نانوتکنولوژی بر امنیت و دفاع
اثرات نانوتکنولوژی بر حفظ محیط زیست
نانوتکنولوژی تمام دستاوردهای گذشته بشر را که در مواد تحقق یافته است، متحول میسازد؛ در واقع تحول نانوتکنولوژی ظرف چند دهه به اندازه تحولات چند قرن خواهد بود.
نانوتکنولوژی رقیب سایر تکنولوژیها نیست بلکه مکمل و پایه آنهاست.
کاربردهای نانوتکنولوژی همه جا همراه با هزینه کمتر، دوام و عمر بیشتر، مصرف انرژی پایین تر، هزینه نگهداری کمتر و خواص بهتر است.
رویکرد جدید و اولویت بسیاری از تکنولوژی های جدید نیز در مقیاس نانو بوده و حتی پاسخگوی چالشهای مطرح آن نمیباشد، به عنوان مثال دو چالش عمده پیل سوختی، یعنی ذخیره ایمن هیدروژن و عدم استفاده از مواد گران با نانوتکنولوژی حل خواهد شد.
مجموعه عملیاتی که از اکتشاف تا قبل از پالایشگاه در زمینه ی تولید و استخراج نفت انجام می گیرد، صنایع بالادستی گفته میشود. این عملیات شامل اکتشاف، حفاری، بهره برداری و مدیریت مخازن میشود. در اکتشاف ابتدا یک انفجار انجام می شود، سپس بازتابشهای صوتی توسط ژئوفون ها ثبت می شود. از تحلیل این بازتابشها و بر پایه تفاوت سرعت حرکت صوت در لایه های مختلف، ساختار لایه ها و نوع سیال درون آنها مشخص میشود. بدین ترتیب ساختارهایی که می توانند احتمالا حاوی نفت و گاز باشند مشخص می شوند. با حفاری زمین تا عمق مورد نظر که در ایران معمولا بین 1500 تا 3500 متر است، فرضیه های اکتشافی نهایی میگردد. در صورتیکه مخزن موردنظر حاوی نفت و گاز باشد، چاه حفر شده برای تولید نفت آماده میشود که شامل نصب یکسری ابزارها درون چاه تا سطح زمین و خط لوله از سطح زمین تا قبل از پالایشگاه است. سپس تا حدامکان درون یک مخزن چاه های دیگری که چاه های توسعه ای گفته میشود، حفر میشوند.
نهایتا تعداد چاه ها، نرخ بهره برداری از هر کدام، استراتژی تولید در آینده و تکنیکهای لازم می بایست برای حداکثر کردن برداشت از مخزن باحداقل هزینه ها مدیریت شود که در مقوله ی مدیریت مخازن میگنجند.